Bidirectional transport by molecular motors: enhanced processivity and response to external forces.
نویسندگان
چکیده
Intracellular transport along cytoskeletal filaments is often mediated by two teams of molecular motors that pull on the same cargo and move in opposite directions along the filaments. We have recently shown theoretically that this bidirectional transport can be understood as a stochastic tug-of-war between the two motor teams. Here, we further develop our theory to investigate the experimentally accessible dynamic behavior of cargos transported by strong motors such as kinesin-1 or cytoplasmic dynein. By studying the run and binding times of such a cargo, we show that the properties of biological motors, such as the large ratio of stall/detachment force and the small ratio of superstall backward/forward velocity, are favorable for bidirectional cargo transport, leading to fast motion and enhanced diffusion. In addition, cargo processivity is shown to be strongly enhanced by transport via several molecular motors even if these motors are engaged in a tug-of-war. Finally, we study the motility of a bidirectional cargo under force. Frictional forces arising, e.g., from the viscous cytoplasm, lead to peaks in the velocity distribution, while external forces as exerted, e.g., by an optical trap, lead to hysteresis effects. Our results, in particular our explicit expressions for the cargo binding time and the distance of the peaks in the velocity relation under friction, are directly accessible to in vitro as well as in vivo experiments.
منابع مشابه
Bidirectional transport by molecular motors: Enhanced processivity and response to external forces (Supporting material)
Our theory is based on single motor properties as briefly summarized in Section 2 of the main text, and described in more detail here. Each motor binds to the filament, walks along it, and unbinds from it stochastically with force-dependent rates derived from single molecule experiments. In these experiments, the motor moves against a load force F exerted by an optical trap. Unbinding rate. The...
متن کاملExternal forces influence the elastic coupling effects during cargo transport by molecular motors.
Cellular transport is achieved by the cooperative action of molecular motors which are elastically linked to a common cargo. When the motors pull on the cargo at the same time, they experience fluctuating elastic strain forces induced by the stepping of the other motors. These elastic coupling forces can influence the motors' stepping and unbinding behavior and thereby the ability to transport ...
متن کاملEngineering controllable bidirectional molecular motors based on myosin
Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly...
متن کاملTau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.
Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus-end directed kinesin and minus-end directed dynein motors. Microtubules are decorated by microtubule-associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neur...
متن کاملEnvironmental control of microtubule-based bidirectional cargo-transport
Inside cells, various cargos are transported by teams of molecular motors. Intriguingly, the motors involved generally have opposite pulling directions, and the resulting cargo dynamics is a biased stochastic motion. It is an open question how the cell can control this bias. Here we develop a model which takes explicitly into account the elastic coupling of the cargo with each motor. We show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 98 11 شماره
صفحات -
تاریخ انتشار 2010